Numerical work using mathematica 26: The Gauge invariant area operator in the flux formulation of LQG

This week I been following up the posts:

The starting point is to take the action of the area operator in the spin representation, and to consider the following normalized trace of the area operator:

gauge invariant

If this give a well-defined operator on either the kinematical Hilbert space or on the Hilbert space of fully gauge-invariant wave functions, and also if we took the limit Λfix →∞ it is possible to  read off the spectrum from the representation. There, the oscillatory behaviour of the sine function is suppressed by a factor of 1/dwhich leads to a discrete spectrum for sufficiently small spins j.

 

areamu=0.1

Mathematica code for the normalized trace of the gauge invariant area operator for μ = 0.1 and j=1…100.

And below the figure from the original paper, A new realization of quantum geometry.

newfig1

 

areamu=0.3

Mathematica code for the normalized trace of the gauge invariant area operator for μ = 0.3 and j=1…100.

And below the figure from the original paper, A new realization of quantum geometry.

newfig2

 

areamu=various

Mathematica code for the normalized trace of the gauge invariant area operator for μ = 0.05, 0.1 and 0.3 and j=1…100

Related posts

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s